Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks.

نویسندگان

  • Nancy Kopell
  • Bard Ermentrout
چکیده

Electrical and chemical synapses exist within the same networks of inhibitory cells, and each kind of synapse is known to be able to foster synchrony among oscillating neurons. Using numerical and analytical techniques, we show here that the electrical and inhibitory coupling play different roles in the synchronization of rhythms in inhibitory networks. The parameter range chosen is motivated by gamma rhythms, in which the gamma-aminobutyric acid type A (GABAA)-mediated inhibition is relatively strong. Under this condition, addition of a small electrical conductance can increase the degree of synchronization far more than a much larger increase in inhibitory conductance. The inhibitory synapses act to eliminate the effects of different initial conditions, whereas the electrical synapses mitigate suppression of firing due to heterogeneity in the network. Analytical techniques include tracking trajectories of coupled cells between spikes; the analysis shows that, in networks in which the degree of excitability is heterogeneous, inhibition can increase the dispersion of the voltages between spikes, whereas electrical coupling reduces such dispersion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tiaza Bem and John Rinzel

[PDF] [Full Text] [Abstract] , October 26, 2004; 101 (43): 15482-15487. PNAS N. Kopell and B. Ermentrout interneuronal networks Chemical and electrical synapses perform complementary roles in the synchronization of [PDF] [Full Text] [Abstract] , March 1, 2005; 17 (3): 633-670. Neural Comput. B. Pfeuty, G. Mato, D. Golomb and D. Hansel The Combined Effects of Inhibitory and Electrical Synaps...

متن کامل

Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses.

Networks of fast-spiking interneurons are crucial for the generation of neural oscillations in the brain. Here we study the synchronous behavior of interneuronal networks that are coupled by delayed inhibitory and fast electrical synapses. We find that both coupling modes play a crucial role by the synchronization of the network. In addition, delayed inhibitory synapses affect the emerging osci...

متن کامل

Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization.

Interneuronal electrical coupling via gap junctions and chemical synaptic inhibitory transmission are known to have roles in the generation and synchronization of activity in neuronal networks. Uncertainty exists regarding the roles of these two modes of interneuronal communication in the central respiratory rhythm-generating system. To assess their roles, we performed studies on both the neona...

متن کامل

Optimal spatial synchronization on scale-free networks via noisy chemical synapses.

We show that the spatial synchronization of noise-induced excitations on scale-free networks, mediated through nonlinear chemical coupling, depends vitally on the intensity of additive noise and the coupling strength. In particular, a twofold optimization is needed for achieving maximal spatial synchrony, thus indicating the existence of an optimal noise intensity as well as an optimal coupling...

متن کامل

Synchronization for Complex Dynamic Networks with State and Coupling Time-Delays

This paper is concerned with the problem of synchronization for complex dynamic networks with state and coupling time-delays. Therefore, larger class and more complicated complex dynamic networks can be considered for the synchronization problem. Based on the Lyapunov-Krasovskii functional, a delay-independent criterion is obtained and formulated in the form of linear matrix inequalities (LMIs)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 43  شماره 

صفحات  -

تاریخ انتشار 2004